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Abstract

Kaczmarz algorithm is an iterative projection method for solving system of lin-

ear equations that arise in science and engineering problems in various application

domains. In addition to classical Kaczmarz, there are randomized and parallel variants.

The main challenge of the parallel implementation is the dependency of each Kaczmarz

iteration on its predecessor. Because of this dependency, frequent communication is

required which results in a substantial overhead. In this study, a new distributed par-

allel method that reduces the communication overhead is proposed. The proposed

method partitions the problem so that the Kaczmarz iterations on different blocks are

less dependent. A frequency parameter is introduced to see the effect of communi-

cation frequency on the performance. The communication overhead is also decreased

by allowing communication between processes only if they have shared non-zero

columns. The experiments are performed using problems from various domains to

compare the effects of different partitioning methods on the communication overhead

and performance. Finally, parallel speedups of the proposed method on larger problems

are presented.

K E Y W O R D S

distributed memory, iterative methods, Kaczmarz, parallel computing, randomized Kaczmarz

1 INTRODUCTION

Given a system of equations;

Ax = b, where A ∈ R
m×n, b ∈ R

m, (1)

the classical Kaczmarz (CK) algorithm1 is an iterative method to solve such linear system of equations. It was later rediscovered as Algebraic Recon-

struction Technique (ART)2 to be used in image reconstruction problems. CK and several other Kaczmarz-like methods are being used in fields of

engineering problems such as signal processing,3 compressed sensing,4 neural networks5 and inverse problems.6

Algorithm 1 shows the steps of CK. It starts with an arbitrary vector x(0) in the row space of matrix A. At iteration k, the algorithm finds x(k); the

closest vector to x(k−1) satisfying AT(i, ∶)x(k) = b(i), where i ≡ k( mod m). We use MATLAB notation AT(i, ∶) to denote the ith row of A and b(i) is the ith

element of b. At line 5 of the algorithm, the iteration is formulated as follows:

x(k+1) ← x(k) +
b(i) − ⟨x(k),A(i, ∶)⟩

||A(i, ∶)||2
2

A(i, ∶), (2)
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Algorithm 1. Classical Kaczmarz (CK)

1: procedure CK(A, b, T) ⊳ A ∈ R
m×n, b ∈ R

m

2: Set x(0) to any vector in the row space of matrix A

3: for k = 0,1,2,… , T − 1 do

4: i ← k (mod m)
5: x(k+1) ← x(k) + b(i)−⟨x(k) ,A(i,∶)⟩

‖A(i,∶)‖2
2

A(i, ∶)
6: end for

7: return x(T)

8: end procedure

Algorithm 2. Randomized Kaczmarz (RK)

1: procedure RK(A, b, T) ⊳ A ∈ R
m×n, b ∈ R

m

2: Set x(0) to any vector in the row space of matrix A

3: for k = 0,1,2,… , T − 1 do

4: Pick i ∈ {1,… ,m} with probability pi ∶= ‖A(i, ∶)‖2
2∕‖A‖2

F

5: x(k+1) ← x(k) + b(i)−⟨x(k) ,A(i,∶)⟩
‖A(i,∶)‖2

2

A(i, ∶)
6: end for

7: return x(T)

8: end procedure

where ⟨⋅, ⋅⟩ denotes the inner product of two vectors. As illustrated in Figure 1, the iterations proceed by computing projections of consecutive

approximations (x(k+1)) onto the solution hyperplane of AT(i, ∶)x = b(i).
The algorithm converges faster if the angle between two consecutive rows are wide and slower if the angle is narrow. Therefore the convergence

rate depends on how the rows of the matrix are ordered. To get rid of this dependency, randomized versions of the algorithm have been proposed.7–9

Later, the convergence of randomized Kaczmarz (RK) was also proved.10 Pseudocode of the algorithm is given in Algorithm 2, where T is the number

of iterations. The same idea of this algorithm is generalized and applied as randomized Coordinate Descent and randomized Newton methods for

symmetric positive definite matrices.11 RK can be seen as a special case for stochastic gradient descent selecting the stepsize as inverse Lipschitz

constant of the stochastic gradient.12

While being useful on over-determined systems, RK does not guarantee convergence to the least squares solution if the system is inconsistent.

Since this is mostly the case on real-world problems there are several methods13–15 introduced to alleviate this problem. Randomized Extended

Kaczmarz (REK)16 is an extension of the algorithm that guarantees convergence to the least squares solution. Other methods for finding the least

squares solution are using strong under-relaxation17 and adaptive stepsizes.18

F I G U R E 1 Projection of Kaczmarz iterations.
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Strohmer et al.10 emphasize the probability distribution for the selection of the rows. Note that in line 5 of Algorithm 2, the coefficient of the

vector A(i, ∶) is normalized with respect to the l2-norm of the same vector. Therefore, it is shown that the selection method offered in Algorithm 2 is

no better than selection with uniform probability.19

There are further studies on RK to determine the probability criterion for selecting the rows. For example, in Greedy Randomized Kacz-

marz (GRK),20,21 at each iteration a row selection that would result in a better residual has higher chance to be selected. There is also a variant using

a probability distribution based on the angle between consecutive rows.22

Since operations executed on the main iteration of Kaczmarz (line 5 of Algorithms 1 and 2) depends on the previous computations, algorithmic

changes are needed in order to execute Kaczmarz in parallel. This is also true for RK.

On distributed memory architectures, component averaging (CAV)23 and component averaged row projections (CARP)24 are two related parallel

implementations of CK, where each process iterates through all the indexes assigned to them and the average of the results are taken according to

the weights determined by the number of non-zeros of the columns. Communication is only needed for averaging and in CARP, communication may

occur after several number of Kaczmarz sweeps if needed. Another example is based on parallel block projections, and uses conjugate gradient (CG)

acceleration.25,26 More recently, a distributed memory parallel implementation of RK is proposed with two different communication variations.27

A number of parallel RK algorithms have also been proposed for shared memory architectures. A notable example that is based on HOGWILD!28

algorithm, ASYRK,29 updates only one random index of the solution vector asynchronously by each process. Another implementation of RK is based

on selecting as many rows as the number of threads, and updating the solution vector by the weighted average of the update vectors.30

Global randomized block Kaczmarz (GRBK)31 shares a similar weighted average update average but executed on block Kaczmarz operations.

Randomized sparse Kaczmarz with averaging (RSKA)32 is another block Kaczmarz method but aims to approximate a sparse solution.

In our study, we propose a new parallel RK method to solve linear system of equations on distributed memory platforms. The main contribution

of this work is threefold. First the problem is intelligently partitioned into blocks so that the blocks are less dependent on each other, therefore less

communication overhead is expected. Secondly, we use a frequency parameter for deciding on a proper period between each communication phase.

The last one is that in our method, the processes can only communicate with each other when they share non-zero columns and when the solution

entries corresponding to the indices of those columns are updated.

2 PROPOSED METHOD

Given the matrix A in Equation (1), we assume it is normalized by rows:

||AT(j, ∶)||2 = 1 ∀j = 1,2 … ,m. (3)

A and b are partitioned into p block rows conformably, using a partitioner mentioned in Section 3.1;

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1

A2

⋮

Ap

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1

b2

⋮

bp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4)

Each process (l ∈ 1 … p) works with the corresponding block matrix (Al ∈ R
ml×n) and the right hand side vector (bl ∈ R

ml ).

The general outline of the proposed algorithm, Parallel Randomized Kaczmarz (PARK), is given in Algorithm 3. For every iteration k until T, each

process l picks a random row number il ∈ 1 · · ·ml and executes main Kaczmarz iteration in parallel;

x(k+1)
l

← x(k)
l

+ (bl(il) − ⟨x(k)
l
,Al(il, ∶)⟩)Al(il, ∶). (5)

Since the updated indices of x(k+1)
l

are the ones corresponding to the non-zero entries of Al(il, ∶) in the worst case, we need to keep track of those

indices. To achieve this, an index list Cl in each process is updated on each iteration as:

Cl ← Cl ∪ non-zero indices of Al(il, ∶). (6)

When k is a multiple of m
pf

, process l sends the indices from Cl and their corresponding values on x(k)
l

to the relevant processes. Then, the updated

index list is reset: Cl ← ∅.

The relevant processes are determined by the shared non-zero columns between the blocks. For an index i, lx and ly are two relevant processes

if both Alx
and Aly

have at least one non-zero value on their ith columns.
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Algorithm 3. Parallel randomized Kaczmarz (PARK)

1: procedure PARK(A, b, x(0), f, p, T) ⊳ A ∈ R
m×n, b ∈ R

m

2: Given A has normalized rows:‖AT(j, ∶)‖2 = 1 ∀j = 1,2… ,m

3: Partition A into p block rows Ap, and b into bp.

4: for each block l do in parallel

5: for k = 0,1,2,… , T − 1 do

6: Pick il ∈ {1,… ,ml} with equal probability

7: x(k+1)
l

← x(k)
l

+ (bl(il) − ⟨x(k)
l
,Al(il, ∶)⟩)Al(il, ∶)

8: Update Cl

9: If k(mod m
pf
) = 0, communicate and Cl ← ∅

10: end for

11: end for

12: return x(T)

13: end procedure

3 REDUCING COMMUNICATION TIME

While working with an m by n matrix, each Kaczmarz iteration performs only 2n multiplication and 2n + 1 addition operations at most. Therefore,

“iterations” in the context of Kaczmarz are much cheaper compared to other classical iterative methods. For sparse matrices, which is mostly the case

in practice, the iterations are even cheaper. However, consecutive iterations depend on each other which is an issue for parallel implementations,

even for the sparse case. The communication an synchronization could dominate the total cost. Hence, for parallel implementations of RK, it is crucial

to reduce the time consumed by communication and synchronization.

3.1 Preprocessing via partitioning

At each Kaczmarz iteration, the solution vector indices to be updated are determined by the non-zero columns of the selected row. Therefore, the

dependency between iterations that work on different rows are determined by the shared non-zero columns of the selected rows.

In the parallel implementation where each process works on different blocks of the matrix, communication is only required if the blocks have

dependent rows. This dependency is determined by the structure of the matrix.

Graph33 and hypergraph34 based combinatorial methods are commonly used to partition the input matrix for different parallel applications. The

main objective of these methods is to minimize the communication overhead between parallel processors as much as possible while maintaining

load balance on them.

In our study, we use METIS,35 a multilevel graph partitioning tool, and PaToH,36 a multilevel hypergraph partitioning tool, to determine row

blocks of A so that blocks have fewer dependent rows with each other. In this way, the communication overhead of PARK can be reduced and the

number of nonzero in each block will be similar. METIS is often utilized for partitioning square sparse matrices since it employs the graph model34 of

a sparse matrix. On the other hand, PaToH uses the hypergraph model34 of a sparse matrix, giving it the advantage of partitioning both rectangular

and square matrices. For METIS, partitioning rectangular matrices is feasible by creating and partitioning a bipartite graph model37 of the matrix;

however, this process is not as straightforward as with hypergraphs.34 We compare naive partitioning, METIS and PaToH on different problems to

evaluate their effects on the number of shared columns between blocks and the convergence performance.

3.2 Other algorithmic improvements

We also offer other algorithmic improvements to limit the communication. Similar to CARP,24 which was a parallel algorithm using CK as inner

iterations, the communication is limited to occur between fixed number of RK iterations. However, to achieve the best performance, the best value

to be chosen for the number of iterations between each communication, depends on the properties of the problem and the number of parallel

processes. The importance of the contribution of communicating some values to the solution could also differ. Therefore, we introduce a frequency

parameter f, and execute numerical experiments with various communication frequencies to see its effect on the performance.

In our study, processes communicate only after every m
pf

iterations, where m
p

is the average number of rows per process. Using a smaller frequency

parameter f, results in less communication.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.8274 by O

rta D
ogu T

eknik U
niversitesi, W

iley O
nline L

ibrary on [16/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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If there are no shared columns between block rows, the operation becomes embarrassingly parallel. Furthermore, as also been done by earlier

parallel implementations,27 we communicate only the resulting vector indices corresponding to the columns that are shared by at least two blocks. In

the proposed method, we limit the communicated indices further by allowing communication only between two processes having the same non-zero

column. Each process has a bit-wise table keeping the non-zero column index shared by other processes. The table requires additional (p − 1)n bits

memory per process.

Another improvement that we propose is to reduce total communication by sending only the updated indices. If an index of the solution vector

for a process is not changed by the iterations executed after the last communication, this process does not send the corresponding entry to others

even if they share the same non-zero column index. Each process keeps a list of updated indices until the communication operation. It sends only

those indices and the corresponding solution vector entries to the relevant processes and clears this list afterwards.

4 NUMERICAL RESULTS

In order to evaluate the performance of the proposed method, first we perform sequential experiments and then we illustrate its parallel perfor-

mance. In the sequential experiments, relatively small matrices are used to show the effects of different partitioning methods on the communication

length and convergence. For parallel experiments, larger matrices are used to illustrate parallel speedups. Due to the random nature of the pro-

posed algorithm, each run initializes a random seed based on the clock and presented results are the average of 10 such runs. We report the relative

residuals, ||Ax−b||2

||b||2
. Iterations start with x(0) as the zero vector. The right hand side vector b is obtained from a solution vector x of all ones, in order

to ensure the system is consistent. Test matrices are obtained from the SuiteSparse matrix collection.38 Tables 1, 2 and 3 show the number of rows,

columns, non-zero ratio ( nnz
mn

, where nnz is the number of non-zeros) and the problem domain of the test matrices.

TA B L E 1 Test matrices for determined problems.

Matrix name m n Non-zero ratio Problem kind

oscil_dcop_01 430 430 8.35 × 10−3 Circuit simulation

Trefethen_300 300 300 5.20 × 10−2 Combinatorial

Trefethen_2000 2000 2000 1.05 × 10−2 Combinatorial

circuit_2 4510 4510 1.04 × 10−3 Circuit simulation

crystm01 4875 4875 4.43 × 10−3 Materials

pde2961 2961 2961 1.66 × 10−3 2D/3D

poli 4008 4008 5.10 × 10−4 Economic

add32 4960 4960 8.07 × 10−4 Circuit simulation

lhr02 2954 2954 4.23 × 10−3 Chemical process

swang1 3169 3169 2.08 × 10−3 Semiconductor device

cage9 3534 3534 3.33 × 10−3 Directed w. graph

adder_dcop_30 1813 1813 3.42 × 10−3 Circuit simulation

fpga_trans_01 1220 1220 4.96 × 10−3 Circuit simulation

rajat12 1879 1879 3.63 × 10−3 Circuit simulation

t2dal_a 4257 4257 2.07 × 10−3 Duplicate model reduction

laser 3002 3002 9.99 × 10−4 Materials

c-28 4598 4598 1.45 × 10−3 Optimization

1138_bus 1138 1138 3.13 × 10−3 Power network

af_shell10 1.51 × 106 1.51 × 106 2.30 × 10−5 Structural

analytics 3.04 × 105 3.04 × 105 2.17 × 10−5 Data analytics

ASIC_680k 6.83 × 105 6.83 × 105 5.66 × 10−6 Circuit simulation

bundle_adj 5.14 × 105 5.14 × 105 7.67 × 10−5 Computer vision
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6 of 15 BÖLÜKBAŞ𝚤 ET AL.

TA B L E 2 Test matrices for overdetermined problems.

Matrix name m n Non-zero ratio Problem kind

photogrammetry2 4472 936 8.85 × 10−3 Computer graphics

n2c6-b5 4945 3003 2.00 × 10−3 Combinatorial

n4c5-b4 2852 1350 3.70 × 10−3 Combinatorial

Franz4 6784 5252 1.31 × 10−3 Combinatorial

ch7-8-b4 1.41 × 105 5.88 × 104 8.50 × 10−5 Combinatorial

D6-6 1.21 × 105 2.37 × 104 5.12 × 10−5 Combinatorial

Franz11 4.71 × 104 3.01 × 104 2.32 × 10−4 Combinatorial

LargeRegFile 2.11 × 106 8.01 × 105 2.92 × 10−6 Circuit simulation

TA B L E 3 Test matrices for underdetermined problems.

Matrix name m n Non-zero ratio Problem kind

n3c6-b9 2511 4935 2.03 × 10−3 Combinatorial

model4 1337 4962 6.90 × 10−3 Linear programming

lp_pilot 1441 4860 6.34 × 10−3 Linear programming

cep1 1521 4769 1.14 × 10−3 Linear programming

lp_bnl2 2324 4486 1.44 × 10−3 Linear programming

mri2 6.32 × 104 1.48 × 105 6.10 × 10−5 Computer vision

watson_1 2.01 × 105 3.87 × 105 1.36 × 10−5 Linear programming

F I G U R E 2 Communication length for various partitioning methods (circuit_2).

4.1 Sequential experiments

In this section, we compare the performance improvement of PARK over sequential RK in terms of relative residual when the number of itera-

tions executed are the same. Moreover, we evaluate the effects of different partitioning methods, compare both the residuals and shared non-zero

columns between blocks. As the number of shared columns between blocks decrease, the dependency between processes and the need for com-

munication also decrease. For each partitioning method, we present the communication length (Figure 2) which is the number of communicated

entries of x(k) for 2, 4 and 8 processes. It is determined by the sum of the shared non-zero columns between Ai and Aj, where i ≠ j and i, j ∈ 1 … p.

Another comparison is based on the targeted imbalance ratio between blocks. The imbalance ratio, which is calculated as the ratio of the

maximum loaded partition to the average load distributed across all partitions, measures the degree of imbalance among the parts. Using a

higher imbalance ratio relaxes the constraint on the loads of the parts, thus providing more opportunities for the partitioning tool to reduce the
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F I G U R E 3 The vertical and horizontal axes represent relative residual and the number of iterations, respectively (lhr02).
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8 of 15 BÖLÜKBAŞ𝚤 ET AL.

interconnection between parts. Since every iteration of RK executes on a single row, the negative effect of imbalance between blocks is expected to

be less than its effect on the classical iterative methods. On the other hand, reducing the number of shared non-zero columns is a more important

partitioning objective for the proposed method. PaToH partitioning experiments are executed with 10% (PaToH10) and 50% (PaToH50) target imbal-

ance ratios in addition to the default 3% (PaToH03). METIS is only evaluated with default parameters because, for almost all of the test matrices,

increasing the allowed imbalance ratio does not affect the output of the partitioner.

We also measure the effects of communication frequency on the convergence of PARK. Communication frequency is inversely proportional to

the period between each communication. Hence, the behavior with respect to the change of frequency is also important in order to demonstrate

the effect of partitioning method used.

The tests are executed on MATLAB 2022b39 using 27 matrices from different problem domains, with number of processes (p ∈ {2,4,8}) and

frequency parameter (f ∈ {0.25,1,4}). For each square matrix in the dataset, there are 45 test results (for different partitioning methods, p and f

values). In Figure 3 horizontal and vertical axes represent the iteration numbers (per block) and the relative residuals, respectively. As seen in the

figure, using a partitioning tool enables the proposed method to perform significantly better than RK for different number of partitions. Further-

more, relative residuals improve as p increases (which is expected since the iteration numbers are given as per block) provided that a partitioning

tool is used or a higher f is used.

Other than reducing the length of each communication (Figure 4), preprocessing via partitioning might also be beneficial for allowing a reduced

communication frequency. If the significant non-zero values (i.e., non-zero values that are important for convergence) are distributed so that

the shared columns between different blocks contain fewer of them, processes can also communicate less without any significant performance

degradation and vice versa. For example Figure 5 for model4 matrix, illustrates that the residual decreases for a given f and p when PaToH03

partitioning is used.

F I G U R E 4 Communication length for various partitioning methods (model4).

F I G U R E 5 Experiments on model4 using f = 0.25 and p ∈ {2,4}.
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BÖLÜKBAŞ𝚤 ET AL. 9 of 15

F I G U R E 6 The vertical and horizontal axes represent relative residual and the number of iterations, respectively (Franz4).

Almost in all cases, as expected, partitioning methods do not eliminate dependencies completely. Therefore, communication is still required.

Furthermore, for some problems, communicating frequently is essential for acceptable convergence rates. In Figure 6 (including 36 test results, since

METIS is not used for overdetermined and underdetermined problems), it is shown that PARK only converges better than RK if f is 4, regardless of

the partitioning method chosen. Figure 7 shows that partitioning reduces the communication length. This might be caused by the structure of the

matrix that leads to a partitioning where the significant non-zero values are still shared after reordering. Nonetheless, partitioning is still effective

for these problems, since it reduces the total communication length.

Finally, Table 4 shows percentage of the cases that the given methods works within best 20% with respect to the communication length. In

other words, 0% and 100% means none and all of the test instances are within the best, respectively. As seen in the Table, for more than 90% of

the test problems, matrices partitioned with PaToH50 has communication length within the best. Therefore, PaToH50 is chosen for the following

parallel experiments.
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10 of 15 BÖLÜKBAŞ𝚤 ET AL.

F I G U R E 7 Communication length for various partitioning methods (Franz4).

TA B L E 4 Percentage of test instances that are within the best 20%.

Partitioner

System Naive PaToH03 PaToH10 PaToH50 METIS

Determined 12.96% 75.93% 81.48% 90.74% 59.26%

Overdetermined 00.00% 58.33% 58.33% 91.67% —

Underdetermined 06.67% 73.33% 93.33% 86.67% —

Overall 09.88% 72.84% 80.25% 90.12% 59.26%

TA B L E 5 Relative residuals and speedups (using the best frequency).

Relative Naive partitioning Partitioning with PaToH50

Matrix name Residual 2 4 8 16 32 64 2 4 8 16 32 64

af_shell10 1 × 10−3 1.61 3.03 4.60 6.25 5.26 4.54 1.27 3.19 5.37 9.49 12.78 21.88

analytics 4 × 10−4 1.00 — — — — — 3.07 4.22 4.40 2.30 — —

ASIC_680k 5 × 10−4 3.94 4.66 3.47 2.78 2.04 — 5.16 4.73 2.41 — — —

bundle_adj 1 × 10−2 1.60 2.01 1.82 1.67 1.06 — 1.37 4.06 10.09 16.27 29.42 25.01

ch7-8-b4 1 × 10−15 1.47 1.82 2.09 1.90 — — 1.36 1.69 2.02 1.62 — —

D6-6 1 × 10−8 1.86 1.90 2.24 2.97 2.18 — 1.31 1.73 2.10 2.42 2.07 —

Franz11 1 × 10−15 1.21 1.25 1.61 — — — 1.70 2.45 3.29 3.82 — —

LargeRegFile 7 × 10−3 2.58 5.38 13.59 25.59 40.29 144.05 1.39 3.31 9.77 18.03 27.47 102.47

mri2 6 × 10−4 2.10 4.46 9.51 18.46 16.61 16.33 1.49 4.17 8.95 18.08 23.23 32.40

watson_1 3 × 10−3 2.11 4.13 6.86 12.30 17.67 23.96 2.16 5.41 11.79 24.09 48.70 71.63

4.2 Parallel experiments

For parallel experiments, we execute our experiments for 10 matrices from 7 application domains. Matrices are chosen with the number of rows

and columns between 20,000 and 5,000,000. The lower limit is set to work with data large enough to observe the benefits of parallelism and the

upper limit is determined based on the limitations of the computing platform. The computing platform is a cluster with 2 × 28 Core Intel(R) Xeon(R)

Gold 6258R CPU @2.70GHz processors each core having 3.4 GB memory using Centos-7.9 and OpenMPI 4.1.1 to compile and run the codes. In

our implementation, processes call MPI Isend() and MPI Irecv() routines for interprocess communication of updated indices and the corresponding

entries on the solution vector.
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For each matrix, PARK is executed with naive and PaToH50 partitioning methods with p ∈ {2,4,8,16,32,64} and f ∈ {0.25,0.5,1,2,4}. The

running time of PARK to converge to the same residual is then compared with the running time of sequential RK. In many applications, the coefficient

matrix does not change and linear systems with different right hand side vectors are solved. Therefore, preprocessing time can be easily amortized

and thus we do not consider the preprocessing times in the following experiments. Table 5 presents the speedup ( sequential execution time
parallel execution time

) results of all the

test matrices where the results for the best experimented f is selected for each number of process. The results for the settings that do not grant any

speedup, or the settings that can not be evaluated due to the communication size limitations of the computing platform are not included. To choose

the target relative residual, we ran the baseline algorithm(sequential RK) until the relative residual levels out and those target relative residual

values are used for each problem throughout the experiments, given in Table 5.

The effect of f and the selected partitioning method for the speedup can be observed in Figure 8 for matrix watson_1. As expected, for smaller p,

f does not seem to have a significant effect on the performance. On the other hand, smaller frequencies tend to be better as the number of processes

increases. This is caused because of the increasing communication overhead. The effect of partitioning for this problem is also clear. PaToH50 pro-

vides up to three times better performance than naive partitioning. This improvement might be caused by blocks both having less shared non-zero

columns and having less significant non-zero entries on shared columns after partitioning. In addition to improving an already acceptable speedup,

partitioning might also enable the proposed algorithm to achieve significantly better speedup than naive partitioning (Figure 9).

Note that some of the results on Table 5 have better speedup than the ideal. Figure 10 is a clear example of this super-linear speedup. It is prob-

ably caused by two factors combined. The first one is the independence between blocks which reduces the time cost of communication. The other

one is not caused by parallelism but our approach. Recall from Section 1 that the convergence rate of RK depends on the properties of rows chosen

between consecutive iterations. Since each process works in different blocks, the consecutive rows chosen are always within a block. This behavior

becomes an advantage depending on the structure of the matrix. It also explains the reason for poorer performance observed after partitioning of

such matrices. Another reason for partitioning to have no effect for some problems is that the matrices have dense rows.

F I G U R E 8 Speedup comparison for matrix watson_1.
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12 of 15 BÖLÜKBAŞ𝚤 ET AL.

F I G U R E 9 Speedup comparison for matrix bundle_adj.

F I G U R E 10 Speedup comparison for matrix LargeRegFile.
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F I G U R E 11 Sparsity structure of matrix ASIC_680k.

F I G U R E 12 Speedup comparison for matrix ASIC_680k.
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14 of 15 BÖLÜKBAŞ𝚤 ET AL.

TA B L E 6 Partitioning with PaToH50 speed improvement with respect to naive partitioning.

Number of partitions

Matrix name 2 4 8 16 32 64

af_shell10 0.79 1.05 1.17 1.52 2.43 4.82

analytics 3.07 4.22 4.40 2.30 1.00 1.00

ASIC_680k 1.31 1.02 0.70 0.36 0.49 1.00

bundle_adj 0.86 2.02 5.54 9.74 27.76 25.01

ch7-8-b4 0.93 0.93 0.97 0.85 1.00 1.00

D6-6 0.70 0.91 0.94 0.82 0.95 1.00

Franz11 1.41 1.96 2.04 3.82 1.00 1.00

LargeRegFile 0.54 0.62 0.72 0.71 0.68 0.71

mri2 0.71 0.93 0.94 0.98 1.40 1.98

watson_1 1.02 1.31 1.72 1.96 2.76 2.99

Best 3.07 4.22 5.54 9.74 27.76 25.01

Worst 0.54 0.62 0.70 0.36 0.49 0.71

Average 1.13 1.50 1.91 2.31 3.95 4.05

For all the permutations of such matrices, at least one block shares most of the non-zero columns with others. Therefore communication length

can not be improved with partitioning methods that utilize row permutations only. ASIC_680k is an example for such problems. In Figure 11, the spy

plot of ASIC_680k is given where dense rows are visible. Thus, as expected, partitioning does not result in a significant improvement compared to

the naive partitioning (Figure 12).

In general, PARK converges faster if partitioning with PaToH50 is applied. Table 6 shows the speed improvement of partitioning with PaToH50

with respect to naive partitioning. It is also seen that as the number of processes increase, the positive effect of partitioning on parallel performance

improves as well. The reason for this behavior is that communication overhead is expected to increase as the number of processes increase. PaToH50

minimizes the communication length, and improves the communication overhead.

5 CONCLUSION AND FUTURE WORK

In this study, a distributed memory parallel randomized Kaczmarz method is proposed. The proposed method partitions the matrix so that the blocks

need to communicate less. Moreover, we limit the communication frequency and the communication occurred between fixed number of iterations by

keeping update lists and shared index tables. Both sequential and parallel experiments show that the proposed method converges in a fewer number

of iterations with a better speedup compared to the baseline algorithms. For future work, we plan to construct a larger dataset using the results

with different frequency parameters. Implementation with another partitioning algorithm (GRIP) which aims to increase the orthogonality between

blocks40,41 will be also investigated. For matrices having dense rows/columns, to overcome the difficulty that partitioning methods encounter, Schur

complement approach42 can be also considered. Lastly, we plan to use other more efficient communication subroutines provided in the MPI library.
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How to cite this article: Bölükbaş𝚤 ES, Torun FŞ, Manguoğlu M. A distributed memory parallel randomized Kaczmarz for sparse system

of equations. Concurrency Computat Pract Exper. 2024;e8274. doi: 10.1002/cpe.8274

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.8274 by O

rta D
ogu T

eknik U
niversitesi, W

iley O
nline L

ibrary on [16/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://info:doi/10.1016/S0167-8191(00)00100-9
http://info:doi/10.1137/22M1487710
http://info:doi/10.1137/21M1453475

	A distributed memory parallel randomized Kaczmarz for sparse system of equations 
	1 INTRODUCTION
	2 PROPOSED METHOD
	3 REDUCING COMMUNICATION TIME
	3.1 Preprocessing via partitioning
	3.2 Other algorithmic improvements

	4 NUMERICAL RESULTS
	4.1 Sequential experiments
	4.2 Parallel experiments

	5 CONCLUSION AND FUTURE WORK

	ACKNOWLEDGMENTS
	ORCID
	REFERENCES

